

The Stellar Initial Mass Function (IMF) SHANTANU BASU

What is the IMF?

- The distribution of stellar and substellar object masses at the time they start their life
- ► A probability density function for masses, f(m)
- ► BUT...
- We only observe radiant flux directly
- ► Field stars have a very wide range of ages (~ 10 Gyr)
- Observing an individual star cluster reduces the age spread considerably (to ~ Myr) but sample size smaller

Mass Limits

- Maximum mass ~ 100 M_sun. Radiation pressure overcomes gravitational pressure
- Minimum stellar mass ~ 0.075 M_sun = 75 M_Jup. Enough gravitational pressure to sustain steady-state nuclear fusion
- Minimum substellar (brown dwarf) mass ~ 0.013 M_sun = 13 M_Jup. Enough gravitational pressure for some nuclear fusion
- Planets, asteroids have all masses < 13 M_Jup</p>

Formation Mechanisms

Hertzsprung-Russell (HR) Diagram

Main sequence is the phase of steady-state nuclear fusion, when internal energy generation balances energy loss at the surface.

Position on main-sequence (Luminosity, Temperature) depends on mass *m*.

Young Stellar Clusters

- All stars and brown dwarfs formed at approximately the same time
- Even brown dwarfs may be detected since they are brightest when young
- A great laboratory for IMF studies if the sample size is large
- Need to worry about contamination, age uncertainty, possible age spread

IR view of the Orion Nebula Cluster – courtesy European Southern Observatory

New deep image of ONC

IR view of Orion Nebula Cluster. Courtesy: ESO New deep, wide near near-IR VLT HAWK-1 map, Drass et al. (2016)

- ~ 920 low mass stars
- ~ 760 brown dwarfs
- ~ 160 planemos

A multitude of very low mass objects from ejection from multiple systems during the early star-formation process?

New respect for substellar objects?

"Face it—in this town, either you're a star or you're just another brown dwarf."

Fig. 1 Cartoon from Mick Stevens published in the New Yorker magazine issue 01/08/1996 (Reprinted with permission by The Cartoon Bank)

Field Star IMF

- Search solar neighborhood stars where sample is considered complete (i.e., can see faintest objects)
- Convert luminosities to mass
- Need significant corrections for stellar evolution
- Need to assume a birthrate of stars B(t) usually taken to be constant

Main-sequence lifetimes

Mass-luminosity relation is approximately $L \propto M^{3.3}$

Lifetime is then ~ available energy/energy loss rate $\tau \propto \frac{Mc^2}{L} \propto M^{-2.3}$

$$\tau = 10 \left(\frac{M}{M_{sun}}\right)^{-2.3} \text{ Gyr} = 13 \text{ Gyr for } 0.9 M_{sun}$$
$$= 5 \text{ Myr for } 10 M_{sun}$$

From PDMF to IMF for field stars

Consider stars of mass *m* and MS lifetime $\tau(m)$ forming at uniform rate over a time period *T*.

What is the correction factor to convert ΔN_{pdmf} to ΔN_{imf} if $M > 0.9 M_{sun}$?

$$\Delta N_{\rm imf} = \Delta N_{\rm pdmf} \, \frac{T}{\tau(m)}$$

From Luminosity to Mass

From Luminosity to Mass

Use an empirically calibrated theoretical model to convert luminosity to mass

Madaan et al. (2017)

Probability Distribution Functions

Probability Distribution Functions

Possible forms of f(m):

Lognormal:
$$f(m) = \frac{1}{m\sqrt{2\pi\sigma}} \exp\left(-\frac{\left(\ln m - u\right)^2}{2\sigma^2}\right)$$

Modified Lognormal Power Law (MLP):

$$f(m) = \frac{\alpha}{2} \exp\left(\alpha \mu_0 + \alpha^2 \sigma_0^2 / 2\right) m^{-(1+\alpha)} \operatorname{erfc}\left(\frac{1}{\sqrt{2}} \left(\alpha \sigma_0 - \frac{\ln m - \mu_0}{\sigma_0}\right)\right)$$

Asymptotically $\propto m^{-(1+\alpha)}$

Modified Lognormal Power Law (MLP)

1. An initial lognormal

2. Lognormal plus exponential growth for fixed time

3. MLP: lognormal plus exponential growth for an exponential distribution of times $f(m) = \frac{1}{\sqrt{2\pi\sigma}m} \exp\left[-\frac{(\ln m - \mu)^2}{2\sigma^2}\right].$ $m = m_0 e^{\gamma t},$ $f(t) = \delta e^{-\delta t}$

Modified Lognormal Power-Law (MLP) Distribution

$$f(m) = \frac{\alpha}{2} \exp\left[\alpha \mu_0 + \alpha^2 \sigma_0^2 / 2\right] m^{-(1+\alpha)}$$

× erfc
$$\left[\frac{1}{\sqrt{2}}\left(\alpha\sigma_{0}-\frac{\ln m-\mu_{0}}{\sigma_{0}}\right)\right]$$
,

where $\alpha = \delta/\gamma$. 3 parameters: μ_0 , σ_0 , α .

Power-law index $\alpha = \delta/\gamma$ is the ratio of characteristic growth time of stars to the characteristic time of accretion termination. Basu et al. (2015)

Modified Lognormal Power Law (MLP)

$$f(m) = \frac{\alpha}{2} \exp\left(\alpha \mu_0 + \alpha^2 \sigma_0^2 / 2\right) m^{-(1+\alpha)} \operatorname{erfc}\left(\frac{1}{\sqrt{2}} \left(\alpha \sigma_0 - \frac{\ln m - \mu_0}{\sigma_0}\right)\right)$$

Best fit parameters for this data set are

$$\mu_0 = -1.10, \sigma_0 = 0.55, \alpha = 2.04$$

- Most stars have masses not much above the limit for sustained nuclear fusion
- Self-regulation of mass accumulation process?
- For high mass end, is there a physical interpretation of slope α ?

Thank You!

Astronomy Winter Schoo Hyderabad, India Feb 20-23, 2017

