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What is the IMF¢

» The distribution of stellar and substellar object masses at the T|me
they start their life - A

» A probability density function for masses, f(m)

» BUT...

» We only observe radiant flux directly

» Field stars have a very wide range of ages (~ 10 Gyr)

» Observing an individual star cluster reduces the age spread
considerably (to ~ Myr) but sample size smaller




Mass Limits

» Maximum mass ~ 100 M_sun. Radiation pressure overcomes
gravitational pressure

» Minimum stellar mass ~ 0.075 M_sun = 75 M_Jup. Enough
gravitational pressure 1o sustain steady-state nuclear fusion

» Minimum substellar (brown dwarf) mass ~0.013 M_sun = 13 M_Jup.
Enough gravitational pressure for some nuclear fusion

» Planets, asteroids have all masses < 13 M_Jup




Formation Mechanisms

Formation mechanisms
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Hertzsprung-Russell (HR) Diagram
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Main sequence is the phase of
steady-state nuclear fusion, when
iInternal energy generation
balances energy loss at the
surface.

Position on main-sequence
(Luminosity, Temperature)
depends on mass m.



Young Stellar Clusters

» All stars and brown dwarfs formed at
approximately the same time

» Even brown dwarfs may be detected
since they are brightest when young

» A great laboratory for IMF studies if the
sample size is large

» Need to worry about contamination, age
uncertainty, possible age spread

IR iew of the Orin Neulo Clu’rer
— courtesy European Southern
Observatory




New deep image of ONC

New deep, wide near near-IR VLT
HAWK-1 map, Drass et al. (2016)

~ 920 low mass stars
~ 760 brown dwarfs
~ 160 planemos

A multitude of very low mass objects from ejection
from multiple systems during the early star-formation
pProcesse

IR view of Orion Nebula Cluster.
Courtesy: ESO



New respect for substellar objectse

VoS
“Face it—1in this town, either you're a star or you're just another brown dwarf.”

Fig. 1 Cartoon from Mick Stevens published in the New Yorker magazine issuce 01/08/1996
(Reprinted with permission by The Cartoon Bank)



Field Star IMF

» Search solar neighborhood stars where sample is
considered complete (i.e., can see faintest objects)

» Convert luminosities To mass
» Need significant corrections for stellar evolution

» Need to assume a birthrate of stars B(t) — usually taken
to be constant



Main-sequence lifefimes

Mass-luminosity relation is approximately L oc M 3.3

Lifetime is then ~ available energy/energy lossrate 7 oc ——oc M

-2.3
10 (Mﬂl Gy =13 Gyrfor0.9 M,
5 Myr for10 M,



Fromm PDMF to IMF for field stars

Consider stars of mass m and MS lifetime t(m) forming at uniform rate over
a time period T.

What is the correction factor to convert AN g TO AN If M > 0.9 M, 2

T
r(m)

AN. . = AN

pdmf



Number of stars

From Luminosity o Mass

Example, stellar cluster NGC 1711, Madaan et al. (2017)
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From Luminosity o Mass

Use an empirically calibrated theoretical model to convert luminosity 1o mass
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Madaan et al. (2017)



Probabillity Distribution Functions

dN .
f(m)zd—m where dN =dN/N_,
mf(m)zmdN _ ON

dm dinm

log mf(m)

Plotting AN vs. Alog m is the norm.
Alogm

(Alog m = Aln m/In10)




log(m f(m))

Probabillity Distribution Functions
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Modified Lognormal Power Law (MLP)
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- ] 1. Aninitial

lognormal

2. Lognormal plus
exponential
growth for fixed
time

3. MLP:lognormal
plus exponential
growth for an
exponential
distribution of
times

log m
Power-law index a=4/y is the ratio of characteristic
growth fime of stars to the characteristic fime of

accretion termination. Basu et al. (2015)
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Modified Lognormal Power-Law (MLP)
Distribution
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where a = &/y. 3 parameters: p, o, a.




Modified Lognormal Power Law (MLP)

o _ 1 Inm—
f(m)=—ex +a’ol [2)m T erfc| —= - 0
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Best fit parameters for this data set are

|y, =-1.10,0, = 0.55,a = 2.04

 Most stars have masses not much

above the limit for sustained nuclear

fusion

|« Self-regulation of mass accumulation

| l | , | | processe
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Gt or high mass end, Is there a physica

Madaan et al. (2017) intferpretation of slope a¢

log mf(m)
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