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“the traditional concept of
habitable zone ... Is critical
when we are searching for
intelligent life”

Bennett & Shostak

Habitable Zone

"too hot"

\j

"too cold"
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Due to solar irradiation, surface temperatures on Venus are 30°C higher than on Earth.
During Cretaceous period, sea temperatures exceeded current levels by 17°C and deep sea
temperatures were higher by 15°C to 20°C.
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Habitable zone
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The Concept of a Habitable Zone

* Habitable zone: range of too cold
distances at which worlds similar
to Earth could exist.

— Example: a region where a
world could have liquid too hot
surface water

a,-
e Existing within a star's habitable Y

zone is insufficient (e.g., Moon).

» Stars brighten as they age,
causing habitable zones to evolve,
moving outward from a star with

time. /

habitable zone



Life Outside the Habitable Zone

e Life can exist outside a habitable zone.

— Mars: Pockets of subsurface liquid water heated
by geological mechanisms could provide
necessary conditions for life.

— Europa, Ganymede, and Enceladus provide
evidence of liquid water heated via radioactive
decay and tidal resonances.

— Rogue planets, orphaned worlds thrown from
their forming protoplanetary disk, number, at
minimum, in the billions.




Life Outside the Habitable Zone

* An Earth-sized world with no star could
maintain a thick hydrogen atmosphere,

insulating planetary heat and keeping oceans
liquid.

e Titan and its liquid ethane, methane, and
ammonia, also give possible conditions for life
outside the habitable zone, expanding the
number of moons capable of supporting life.
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Description Key Advantages Major Limitations
Direct Obtain images or spectra ¢ Is the only method that allows * Requires large telescopes and some
Detection of extrasolar planets direct study of the planets means of blocking light from star
themselves planet is orbiting
Astrometric Infer planet’s existence * Is now possible with GAIA space- * [s generally possible only for rela-
Method from small changes in craft tively nearby stars
star’s position in sky * Detects planets in all orbit orienta- e Is biased toward finding massive
tions except edge-on planets that orbit far from their
stars
e May require many years of obser-
vation to detect these planets (with
large orbital periods)
Doppler Infer planet’s exist- * [s possible from ground-based * [s biased toward finding massive
Method ence from star’s motion telescopes planets with close-in orbits
toward/away from us a5 e Detects planets in all orbit orienta- ¢ Underestimates star’s true motion
revealed by Doppler shifts — tjong except face-on except when system is viewed
in its spectrum edge-on
e Requires stellar spectra, which
means large telescopes and long
observation times
Transit Infer planet’s existence ¢ Allows many stars to be observed * Is possible only for planets with
Method from slight changes in at once edge-on orbits as viewed from

star’s brightness as planet
passes in front of
(or behind) it

¢ Can detect very small planets
* [s feasible with small telescopes

e Can provide some atmospheric
data in cases of measurable eclipses

Earth

e For small planets, requires sensi-
tivity possible only from a space
observatory
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Doppler Ultrasound:
The use of the Doppler effect in Medicine
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Doppler Measurement 31 Pegasus (1993)
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Planetary Property Method(s) Used | Explanation
period Doppler, We directly measure orbital period
® astrometric, or
-E [ransit
g_ distance Doppler, We calculate orbital distance from orbital
e astrometric, or | period using Newton's version of Kepler’s third
A transit law
§_ eccentricity Doppler or Velocity curves and astrometric star positions
£ astrometric reveal eccentricity
© inclination transit or Transits identify edge-on orbits; astrometric data
astrometric measure any inclination angle
, Imass astrometric or | We calculate mass based on the amount of stellar
@ Doppler motion caused by the planet’s gravitational tug
——
o size (radius) transit We calculate size based on the amount of dip in a
& star’s brightness during a transit
Tt
_°_'_ density transit and We calculate density by dividing the mass by the
® Doppler volume (using size from transit method)
0 atmospheric transit or di- Transits and eclipses provide data on atmospheric
f composition and | rect detection |composition and temperature
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Current Potentially Habitable Exoplanets

Ranked in Order of Similarity to Earth

¢ ¢ @ 0 ¢

1. Gliese 667C c 2. Kepler-62 e 3. Kepler-283 c 4. Kepler-296 f 5. Tau Ceti e*

&

6. Gliese 180 c* 7. Gliese 667C f 8. Gliese 581 g*  9.Gliese 180b*  10. Gliese 163 ¢

’ Jupiter

11. HD 40307 g 12. Kepler-61b  13.Gliese 422 b*  14. Kepler-22b  15. Kepler-298 d

@ = ®

16.Kepler-62 f ~ 17.Kepler-186f  18.Kepler-174d  19.Gliese 667Ce  20. Gliese 682 b*  21.Gliese 581 d  *planet candidates




Potentially Habitable Exoplanets .
Ranked by Distance from Earth (light years)

¢ @

b ly 13 ly
Proxima b Kapteyn b*

22y 22y

o -
22 ly 561 ly 770 ly 1115 ly 1200ly |
GJ 667 C f* Kepler-186f  Kepler-1229b  Kepler-442 b Kepler-62 f

Planet candidates indicated with asterisks.
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Kepler's Small Habitable Zone Planets
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Energy Received by Planet
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