

A Magnetic Ribbon Model for Star forming Filaments

Sayantan Auddy

Supervisor: Dr Shantanu Basu

February 23, 2017

Winter School on Astronomy, Hyderabad

Physics and Astronomy

Today's Agenda

- Objective
- Background
- Filamentary Structure
- MHD Simulations
- Analytic Model
- Results

Objective:

We develop an **analytic model** to explain some of the recent observations by Herschel Space Observatory of constant width $(0.10 \pm 0.03 \text{ pc})$ in the filamentary structures in molecular clouds.

A MAGNETIC RIBBON MODEL FOR STAR-FORMING FILAMENTS

SAYANTAN AUDDY¹, SHANTANU BASU¹, AND TAKAHIRO KUDOH²

¹Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7, Canada. ²Faculty of Education, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.

ABSTRACT

We develop a magnetic ribbon model for molecular cloud filaments. These result from turbulent compression in a molecular cloud in which the background magnetic field sets a preferred direction. We argue that this is a natural model for filaments and is based on the interplay between turbulence, strong magnetic fields, and gravitationally-driven ambipolar diffusion, rather than pure gravity and thermal pressure. An analytic model for the formation of magnetic ribbons that is based on numerical simulations is used to derive a lateral width of a magnetic ribbon. This differs from the thickness along the magnetic field direction, which is essentially the Jeans scale. We use our model to calculate a synthetic observed relation between apparent width in projection versus observed column density. The relationship is relatively flat, similar to observations, and unlike the simple expectation based on a Jeans length argument.

Keywords: ISM: clouds — magnetic fields — magnetohydrodynamics (MHD) — stars: formation —

our purchee

Molecular Clouds

- These are one of the massive objects in the Galaxy with masses up to10⁶ M_{solar}.
- Interstellar clouds where the density and the size permits the formation of molecules typically molecular hydrogen.
- The main constituent of Molecular Clouds are molecules, dust grains, ions and stars.
- These are the sites of the present day star formation.

Herschel Observations

Aquila (left) and Polaris (right) molecular clouds with class 0 sources (green) and prestellar cores (blue) overlaid. Enhanced contrast to emphasize filaments.

Filament Width

Filament Width

- Filaments are characterized by a narrow distribution of widths with the median value of 0.10 ± 0.03 pc.
- The width is independent of the column density. This is in contradiction to the distribution of central Jeans length, which scales as
- Σ^{-1} , where Σ is the surface density.

Arzoumanian et al 2011

MHD Model

MHD Equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \vec{v} \cdot \nabla \rho &= -\rho \nabla \cdot \vec{v}, \\ \frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} &= -\frac{1}{\rho} \nabla P + \frac{1}{c\rho} \vec{j} \times \vec{B} - \nabla \psi, \\ \frac{\partial \vec{B}}{\partial t} &= \nabla \times \vec{v} \times \vec{B} + \nabla \times [\frac{\tau_{ni}}{c\rho} (\vec{j} \times \vec{B}) \times \vec{B}], \end{aligned}$$

$$\vec{j} = \frac{c}{4\pi} \nabla \times \vec{B},$$

$$\nabla^2 \psi = 4\pi G\rho,$$
$$P = c_s^2 \rho.$$

Analytic Model

Equate ribbon pressure to background magnetic and ram pressure in the x-y direction for a gas cloud stratified in the z direction.

$$H\frac{B^2}{8\pi} = H_0 \left(\rho_0 v_{t0}^2 + \frac{B_0^2}{8\pi}\right)$$

Oscillating quasi-equilibrium subcritical ribbon eventually collapses due to ambipolar diffusion.

 v_{t0} is the nonlinear flow speed B_0 is the initial uniform magnetic field in z direction ρ_0 is the initial density $H_0 = c_{s0} / \sqrt{(2\pi G \rho_0)}$ is the initial thickness of the cloud in the z direction

Analytic Model (Cont.)

Using flux freezing during compression,

$$\left(\frac{\rho}{\rho_0}\right)^{1/2} \sim \left(v_{t0}^2 + \frac{B_0^2}{8\pi\rho_0}\right) \left(\frac{B^2}{8\pi\rho}\right)^{-1}.$$

For mass per unit length conserved, i.e. $\rho_0 L_0 H_0 = \rho L H$

 $v_{A0}^2 = B_0^2 / (4\pi\rho_0)$ is the square of the Alfven speed of the cloud

The Ribbon width is:

$$L = L_0 \left[2 \left(\frac{v_{t0}}{v_{A0}} \right)^2 + 1 \right]^{-1}.$$

If the flow speed v_{t0} is comparable to the Alfven Speed v_{A0} then the ribbon width is $L \sim L_0/3$

Viewing Angle

Depending on the viewing angle the observed width of the ribbons will vary.

The column density will vary with different viewing angles.

 $L_{obs} = L \cos \theta + 2H \sin \theta$

Western 😽

Filament Width

Auddy et al 2016, ApJ

Thanks

Group Members

Prof. Shantanu Basu

Dr. Andy Pon

Deepakshi

Mark

Pranav

Discovery Grant from NSERC

