Figure 1: The Orion Nebula in the Milky Way.
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Do all stars have the same mass as the sun? Or is there a distribution of
masses of stars in a stellar cluster i.e. a collection of stars? If yes, what does
this distribution look like? Do most stars take the mass of the sun or is their
some other characteristic mass where the stellar mass distribution peaks?

1 Mass Function

Even though all stars in a stellar cluster are formed in the same environment, the
process of forming a star is a stochastic/probabilistic in nature and in fact very
difficult to understand. The reason being it’s not just self-gravity that causes
the gas to collapse and form the star but a combination of many other processes
such as magnetic field, and turbulence that determine this formation. So stars
formed in a molecular cloud, which is the birth place of stars, will not just
have one particular mass but a spectrum of masses. And when you distribute
these stellar masses in a star forming event into different mass intervals, the
distribution is called the mass function.

Since stars also like us have a limited amount of of fuel in them i.e. have a finite
lifetime, they die too. Or more appropriately to say ’evolve’. The distribution
of the stellar masses changes each time a star evolves. Hence, at each epoch
i.e. a snippet of considerable time, your distribution of stellar masses varies.
So if you got lucky one day, and say hypothetically you really happen to catch
the star formation event from the beginning, the distribution you obtain at the
time of birth is called the initial mass function.

2 Mathematical representation of Mass function

As we have established that stellar masses range over a continuous spectrum of
masses, mathematically we can model this phenomena using a probability dis-
tribution function. So if m is the mass of a star considered to be a continuous
random variable, we can use a pdf f(m), where f(m)dm gives the number of
stars in some volume of space in the interval [m,m + dm],

f(m) = XV 1)

dm

where N = Number of stars in the interval [m,m + dm] , V = Volume.

But wait, there is an extremely important assumption that underlies such a
modeling process. We assume that this pdf of stellar masses only depends on
the mass as an input and is independent of space and time. Hence each time i.e.
at each epoch you observe the stellar cluster you will get a different distribution.
Also which part of the cluster you’ll look at will change the distribution. So it
is ideal to observe an entire stellar cluster to study the mass function.

It is a usual practice to divide the intervals for the mass function into log masses



i.e. take the pdf as f(Inm) instead of f(m) i.e.

(i) = 2NV). )
flinm) = 2OV dm 3)
fanm) = m f(m)., (4)

f(lnm) gives the number of stars in some volume of space in the interval
[lnm,Ilnm + dinm)].

CODE example: In the following example we want to study the stellar mass
distribution of the Orion Nebula Cluster (ONC) [1, 2] which is a stellar cluster
in the Milky Way. The ONC.dat file contains the different stellar masses. To
obtain the mass function, we plot a histogram with f(m) on the y-axis which
is obtained from the frequency of each mass interval. The mass function of any
stellar cluster has a characteristic peak and a power-law tail.
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10 Objective : To the study the probability denstiy

11 distribution of mass for ONC data.
12

13 79

14

15 ## for any python documentation and FAQs
16 ## visit https://www.python.org/doc/

17

18 ## Importing the numerical module numpy
19 ## https://docs.scipy.org/doc/

20 import numpy as np

## Importing matplotlib for plotting
## visit http://matplotlib.org/contents.html
import matplotlib.pyplot as plt

@ b
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6 ## Scipy 1is scientific python
27 from scipy.special import erfc

[ NN

N

8
o ## to get the plot in a separate GUI window (not needed for
30 ## other platform)

31 # %matplotlib qt

33 ## this command plots the matplotlib figures in line with the
4 ## code this works by default in jupyter

35 %matplotlib inline

36

37 # That gives a interactive version within the notebook

3s # %matplotlib notebook



10 ## read the data file in fp
41 ## fp is a file handle
42 fp = open (”ONC.dat”,’r’)

14 ## Declaring an empty list to store the data from the .dat file
45 mass =|]

17 ## Reading the data from a .dat file line by line

18 ## please refer to the link for details

10 ## http://stackoverflow.com/questions /4071396/split —by—comma
50 ## —and—strip —whitespace—in—python

51

52 ## Python reads top to bottom left to right.

53 for line in fp:

54 #print (line.strip () .split())

55 #print (line .strip ())

56 ## t is a list. You can check by type(variable)

57 t = line.strip().split ()

58 for value in t:

59 # the func append helps to modify the array storage
60 # python returns a string, but we need a floating point
61 mass . append ( float (value))

63 ## closing the file after it reads in the data ximportant
61 fp.close ()

66 ##to convert rho python list to numpy array list for easy
manipulation
67 mass_array = (np.asarray (mass))

72 Visualisng the nature of the data by ploting a histogram
73

74 PR

75

76 ##declaring the bin size for the histogram

77 binsize = 50

7s plt.figure (1)

79

s0o ## this gives the latex text for the plots
s1 # plt.rc(’text’,usetex=True)

83 ## Binning in d In(mass). Binning can be modified depending
s4 ## on the requirement of the problem

s5 plt.hist (np.log(mass_array),binsize ,normed=1,facecolor="red’
86 ,cumulative=False)

ss ## Binning in d(mass) i.e. linear spacing
so # plt.hist (mass_array , binsize ,normed=1,facecolor="red’
90 # ,cumulative=False)

02 ## x axis limit
93 plt.xlim (min(np.log(mass_array))—0.5,max(np.log(mass_array))-+0.5)
04 ##£ y axis limit
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Figure 2: The histogram i.e. the mass function for the stellar masses of the
ONC.

95 # plt.ylim(—3,3)

o6 ## log scale on the y axis

o7 plt.yscale(’log’)

os plt.title (”ONC mass function” ,fontsize=11)
90 plt.xlabel (”1n(mass)”, fontsize=12)

100 plt.ylabel (”Frequency” ,fontsize=12)

101 plt.savefig ("ONC.png” ,dpi = 600)

102 plt.show ()

Listing 1: Python example

3 Modeling the Mass function

Since 1955, many astronomers have used various functions to model the stellar
mass distribution. Salpeter (1955) was the first to provide the stellar initial
mass distribution with an analytic power law pdf approximation. What he
essentially did was to fit a power law or a linear function in the log-log axis since
a power-law becomes a linear function in log-log. So the model he obtained was



dN'/dm o m~® with a = 2.35 or dN'/dinm o m~13° over the mass range
0.4 Mg < m < 10 Mg. Here Mg represents the mass of the sun.

NOTE: The exponent that you obtain for f(m) i.e. dN'/dm is —« while the
exponent for mf(m) i.e. dN'/dinm is —a + 1. The other two most commonly
used models are the Chabrier functional form and the Kroupa functional form.
Chabrier modeled the substellar and low mass stellar regime i.e. m < 1 Mg
using a lognormal function and used the Salpeter’s power-law approximation
for intermediate and high mass stellar regime i.e. m > 1 Mg Kroupa, on the
other hand, gave a multisegment power law profile i.e. piecewise function of
three power-laws for substellar, low, and high stellar mass regimes.

4 Modified Lognormal Power-Law Probability
Distribution Function

In 2004, Basu & Jones [3] introduced a hybrid three-parameter probability den-
sity function, the Modified Lognormal Power-Law (MLP) probability distribu-
tion function. Except for the power law approximation introduced by Salpeter
that is used to model stars above 1 Mg, other models like the Chabrier and
Kroupa functional form need some sort of a joining condition as they are piece-
wise functions. The MLP on the other hand doesn’t require a joining condition.
Also most other commonly used functional forms lack physical justification while
the MLP has an underlying physical motivation. Please refer to Basu & Jones
to understand the physical motivation underlying the model.

4.1 PDF and Properties

The MLP function is a three-parameter pdf. The three parameters of the dis-

dN
tribution function are ag, pg, and og. ag + 1 is the power-law index of T
m

for the power-law distribution: characteristic of a Pareto distribution which is
used to represent pure power-law distributions. The parameters o and o3 are
the same as for the lognormal distribution but do not represent the mean and
variance of the distribution unlike for the lognormal distribution. Parameters
o and og describe the shape of the lognormal-like body and «g represents the
power-law tail. In the limit as og tends to zero, the function behaves as a pure
power-law.

If m is the the mass of a star, the pdf of the MLP function is given in the
closed form as [4]:

1 1 —
f(m) = %GXP (Ololio + 04308/2) m (100 (\/5 (0!000 - M)) , M€

Some properties of the MLP function are:
(i) Raw Moments:
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(ii) Variance:

Var(M) = E[M?]—(E[M])? = ag exp(oa+2u0) (a:% 5~ (aooio 1)2> , ag > 2.

(iii) Cumulative Distribution Function:

2 2 2

1 1 - 1 202 1 —
Frn(m; ao, o, 00) = = <_n($%uo)_exp (ao,uo + %UO) m~ (aoao - n(m) = io
o0

(6)
(iv) Mode: Solving the following transcendental equation will give us the mode
of the distribution

2

fllm) =0 <= K(u)=e"", (7)
where
K:00(Oé0+1) g,u\}é<a00’01nﬁlao_ﬂo). (8)

5 Model Fitting

Model fitting investigates whether a mathematical model can be used to describe
a given data set. Here we check whether the MLP can be used to describe the
underlying stellar mass distribution. To do so we use non-linear regression/curve
fitting. Regression essentially finds best fit values for the unknown model pa-
rameters by minimizing the sum of the squared errors. From the mass function
of the ONC which is the normalized histogram obtained above, we can consider
the centre of each bin in the histogram and the bin height corresponding to the
value for f(m) as our corresponding data points.
CODE: The following code demonstrates obtaining the data points for m, f(m)

or m,mf(m) from the histogram depending whether binning in linear or log
scale.

## To fit the histogram using the least square method
## this gives the frequency and the edges of the bins

## important to note we bin in d mass (linearly spaced)
# bincount ,bin_edge = np.histogram (mass, binsize ,normed=1)

7 ## important to note we bin in d In(m) (logarithmically spaced)

bincount , bin_edge = np. histogram (np.log(mass_array),binsize ,normed
=1)

## bincenter is the value for the center of each bins
bincenter = (bin_edge[l:]+ bin_edge[: —1]) /2.0
xdata=bincenter [:]

ydata=bincount [:]

plt.figure (2)

# plt.ylim (10%%—1,10%%3)

plt.ylabel(’In (mf(m))’)

plt.xlabel (’In (m) ")

plt.plot(xdata,ydata, 'ro’ ,markersize=3)
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Figure 3: The data points obtained from the histogram of the ONC.

plt.yscale(’log’)
plt.savefig (?ONCMassfunc.png” ,dpi

600)

Listing 2: Python example

CODE: We then define the MLP function. Note in the following definition
we use mf(m) instead of f(m) and hence the exponent in the above definition
of the MLP is —qyq instead of —(1 4+ ). Regression is used to obtain the best
fit parameters for the underlying stellar mass distribution of the ONC.

)

)

)

We will use least square method to fit MLP to the mass data of
the ONC cloud. Curve Fit is the funtion in python
which uses non—linear least squares to fit a function, f, to

data .

A statistical

method used to determine a line of best fit

by minimizing the sum of squares created by a mathematical

function .
A 7square”
data point

and the regression

is determined by squaring the distance between a

line .
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def MLPcurvefit (x, alpha ,mu0, sigma0) :
General overview of the function
This is MLP function f (m) which is used to fit the data
using
least square method
Inputs: An array of x values and the parameter
alpha, mu_{0} and sigma_{0}
Output: Best fit parameters
Reference : Basu et al 2015.
Author: Sayantan
pl=(alpha/2.0) *np.exp (alpha*mu0+((alpha*sigma0)**2) /2.0)
p2=xx*(—(1+alpha))
arg=(1.0/np.sqrt (2.0) ) *(alphaxsigma0—(np.log(x)—mul)/sigma0)
p3=erfc (arg)
p = plxp2x*p3;
return (p)

## imoporting the curve_fit function from scipy module
from scipy.optimize import curve_fit

##important to note we bin in d(m)
bincount-ls , bin_edge_ls = np. histogram (mass_array , binsize ,normed=1)

# bincenter is the value for the center of each bins
bincenter_ls = (bin_edge_ls[1:]+ bin_edge_ls[: —1]) /2.0
fitParams , fitCov=curve_fit (MLPcurvefit , bincenter_ls ,
bincount_ls ,bounds=([0.,—3,0,],[5., 5.,
5.1))
print (’alpha=%f\n %(fitParams [0]) )
print (’mu_0=%f\n'% (fitParams[1]))
print ( ’sigma_0=%f\n’%(fitParams [2]))

Listing 3: Python example

RESULT:
alpha=1.552174
muy = —2.306813
sigmag = 0.770617

5.1 Maximum Likelihood Estimation

A more robust method of fitting a model to data points is by using maximum
likelihood estimation. Given a sample of data points z1, xa, x3, ..... , Ty, assumed
to be taken from a pdf f(X |©) of k unknown parameters 61, 65, ....... , Ok, we
can define the likelihood function.

L(O|z;) = f(21|0)f(22]0).... f(xn |©) = [ f(w:]©), 9)

i=1

Note that L(© |z;) is a function of the unknown parameters with data points
kept fixed unlike the pdf which is a function of observations with fixed parameter
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values. Maximizing the likelihood function helps in finding the parameter values
that are most likely to describe the data set.
For simplicity the log of the likelihood function is maximized i.e.:

(10)
One can find maximum likelihood estimator for the parameters 1, 0, ....... , O
by simultaneously solving for:
dIn L(© |z;) .
—— =0:75=1,...,k. 11
i, J=1. (11)

For various distributions like the lognormal distribution or the Pareto distribu-
tion, functional forms can be found for the maximum likelihood estimators but
for distributions that do not have an analytic form for the estimators, global op-
timization techniques such as basin hoping or differential evolution are explored
to find global minima for the negative-likelihood function i.e. —In L(© |x;)
which is same as finding global maxima for the likelihood function.

CODE: We first need to define the likelihood function for the MLP function
corresponding to the definition given above in equation 9 and 10.

## Declaring MLP maximum likelihood function. Please refer to the
## following reference for details.

def MLPMLEfit ( params) :

General overview of the function

This is the maximum likelihhod of the MLP function.

Inputs: The data point are loaded as inputs

Output: On optimising this function it gives the best fit
paramters

alpha, mu_{0} and sigma_{0}

Reference : Please read section () for details

Author: Sayantan
alpha ,mu0, sigmaO=params
X = mass-array # the data is loaded
pl=(alpha /2.0) *np.exp (alpha*mu0+((alphaxsigma0) *x2) /2.0)
p2=xx*(—(1+alpha))
arg=(1.0/np.sqrt (2.0) ) *(alphaxsigma0—(np.log(x)—mul)/sigma0)
p3=erfc (arg)
p = plxp2xp3;
return sum(—np.log (p)) # retuns the log likelihood.

Listing 4: Python example

CODE: We then optimize the log likelihood function using 2 methods i.e.
differential evolution and basin hopping. The following is code for differential
evolution.

10



For optimization we shall use
scipy .optimize. differential_evolution

Finds the global minimum of a multivariate function.
Differential Evolution is stochastic in nature (does not use

oS S O VI

gradient

7 methods) to find the minimium, and can search large areas of
candidate

8 space, but often requires larger numbers of function

evaluations than
9 conventional gradient based techniques.
10 For detials:
11 https://docs.scipy.org/doc/scipy —0.18.1/reference/generated/
12 scipy .optimize . differential_evolution .html

999

15 ## We want to find the optimized value for the parameters alpha,

16 ## mu0 and sigmaO for the best

17 ## fit MLP fucntion .

18

19 ## importing the differential_evolution routine from scipy module

20 from scipy.optimize import differential_evolution

21 ## defining the possible bounds for the values of alpha, mu0 and
sigma0

22 bounds = [(1, 5), (=3, 1),(0.01,2)]

24 np.random.seed (1) # fixed seed gives the same values on every run

27 ## result .x, result.fun

26 result = differential_evolution (MLPMLEfit, bounds)
28 print (” global minimum: x = [%.3f, %.3{,%.3f], f(x0) = %.3f\n” %

29 (result.x[0], result.x[1],result.x[2],result.fun))
so print (’alpha = %.3f\n’%(result.x[0]))
31 print ( ’mu0 =%.3f\n ' %(result .x[1]))

32 print (’sigma_0= %.3f\n’%(result .x[2]))
Listing 5: Python example

RESULT: global minimum: x = [1.403, -2.084,0.348], f(x0) = -789.658
alpha = 1.403

mu(0 =-2.084

sigmag = 0.348

CODE: Optimization using Basin Hopping is demonstrated below.

29

For optimization we shall use

scipy .optimize import basinhopping

For detials:

https://docs.scipy.org/doc/scipy —0.18.1/reference/generated/scipy .
optimize . basinhopping . html

ok W N e

~

9 00

10 from scipy.optimize import basinhopping
11
12 ## intial guess values of the parameter alpha, mu0O, sigma0

11
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x0 = [3., 0.1,0.1]

## defining the possible bounds for the values of alpha, mu0 and

sigma0
xmin = [1.,—-3.,0.] # lower bound
xmax = [5.,1., 1.] # upper bound

## rewrite the bounds in the way required by L-BFGS-B
bounds = [(low, high) for low, high in zip(xmin, xmax) ]

BHsettings = dict (method="L-BFGS-B” , bounds=bounds)

ret = basinhopping (MLPMLEfit,x0, minimizer_kwargs=BHsettings ,
niter =200,disp=0,niter_success=None)

print (” global minimum: x = [%.3f, %.3f,%.3f], f(x0) = %.3f\n” %
(ret.x[0], ret.x[1],ret.x[2],ret.fun))

print ("alpha = %.3f\n’%(ret.x[0]))

print ( ’mu0 =%.3f\n"%(ret .x[1]))

print (’sigma_0= %.3f\n’%(ret.x[2]))

Listing 6: Python example

RESULT: global minimum: x = [1.421, -2.071,0.351], f(x0) = -790.021
alpha = 1.421
mu(0 =-2.071
sigmag = 0.351
CODE: Once the best fit values of the unknown parameters are found using
regression and maximum likelihood we finally visualize the mass function with
the MLP fits.
Plotting the MLP with the best fit parameters along with
the ONC data points.

399

s # using the best fit parameters from the curve fit least square

method
params_ls = fitParams [0],fitParams[1],fitParams [2]
# using the best fit parmameters from differential evolution
optimisation
params_dff = [ret.x[0],ret.x[1],ret.x[2]]
# using the best fit parameters from the basinhopping optimisation
params_bh = result.x[0],result.x[1],result.x[2]

# defining an array of numbers to plot the MLP function

xarray = np.logspace(—1.5,1.6,1000)

# plt.hist (np.log(mass_array) ,binsize ,normed=1,facecolor="blue
# ,cumulative=False)

plt.figure (3)

plt.clf ()

plt.plot (xdata,ydata, 'ro’,markersize=3,label="ONC data”)
plt.plot(np.log (xarray) MLP(xarray ,+* params_ls), ’g—’,label="LS")
plt.plot (np.log (xarray) ,MLP(xarray ,* params_dff),’k’ label="DE”)
plt . plot (np.log (xarray) ,MLP(xarray ,*params_bh),’b—’ label="BH")
plt.legend (numpoints=1,fancybox=True ,shadow=True, fontsize=10)

5
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Figure 4: Plotting the mass function of the ONC with the MLP fits.

xticks (fontsize=12)

yticks (fontsize=12)

title (r’ONC mass density PDF’, fontsize=14)
xlabel (’'In(m)’,fontsize=14)

ylabel ('In(m f(m)’,fontsize=14)

# plt.text(—2,0.001,r’$\sin(x)$’,fontsize=12)

plt.yscale(’log’)
plt.savefig (” MLPfits” ,dpi = 600)
plt .show ()
Listing 7: Python example
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